Exercise 31

Explain, in terms of linear approximations or differentials, why the approximation is reasonable.

$$
\frac{1}{9.98} \approx 0.1002
$$

Solution

Compute the derivative of $y=1 / x$.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(\frac{1}{x}\right) \\
& =-\frac{1}{x^{2}}
\end{aligned}
$$

Consequently, the differential of $y=1 / x$ is

$$
d y=-\frac{1}{x^{2}} d x
$$

In order to estimate $1 / 9.98$, set $x=10$ and $d x=-0.02$.

$$
d y=-\frac{1}{10^{2}}(-0.02)=\frac{1}{5000}=0.0002
$$

Note that $d y$ here is the vertical distance from the function's actual value at $x=10$ to the linear approximation's value at $x=9.98$.

$$
\frac{1}{9.98} \approx \frac{1}{10}+0.0002=0.1002
$$

